Abstract
Harmful algal blooms are a serious threat to shellfish farming and human health all over the world. The monitoring of harmful algae in coastal waters originally involved morphological identification through microscopic examinations, which was often difficult unless performed by specialists and even then often did not permit identification of toxic species. More recently, specific molecular markers have been used to identify specific phytoplankton species or strains. Here we report on the use of the intersimple sequence repeat (ISSR) technique to develop specific sequence characterized amplified region markers (SCAR) and to identify with these tools two toxic species in French coastal waters, the diatom Pseudo‐nitzschia pseudodelicatissima (Hasle) Hasle and the dinoflagellate Alexandrium catenella (Whedon and Kofoid 1936), Balech 1985. Six polymorphic ISSR regions were selected among amplified fingerprints of a representative sample of phytoplankton species. After cloning and sequencing the selected polymorphic ISSR regions, pairs of internal primers were designed to amplify a unique and specific sequence designed as a SCAR marker. Of the six selected SCAR markers, three were specific to P. pseudodelicatissima and one for A. catenella. The SCAR marker specificity was confirmed by using basic local alignment search tool comparison, by experimental assays on different strains from 11 countries, and by checking that the sequence amplified was the expected one. When tested on water samples collected along the French shores, the four specific SCAR markers proved to be efficient tools for fast and low‐cost detection of toxic phytoplankton species.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.