Abstract

To characterize the role of NGF in the development of forebrain cholinergic neurons, we established primary cell culture systems to grow these cells under controlled in vitro conditions. Cultures of dissociated cells were prepared from the septal area of fetal (E17) rats, which contained part of the group of basal forebrain cholinergic neurons. Cultures were treated either with NGF (100 ng/ml) or with an antiserum against NGF (1:500 dilution). To assess the influence of non-neuronal cells, 2 types of high-density cultures were prepared: mixed neuronal-glial cultures and pure neuronal cultures. Cholinergic neurons were identified using choline acetyltransferase (ChAT) immunocytochemistry and AChE cytochemistry. Receptors for NGF (NGF-R) were located immunocytochemically using monoclonal antibodies against rat NGF-R. We report that, first, NGF-R are exclusively localized on cholinergic neurons in septal cultures. All neurons labeled with antibodies against NGF-R also contained AChE. Twenty-one percent of all AChE-positive neurons were not stained in NGF-R immunocytochemistry (AChE has earlier been shown to be colocalized with ChAT in septal cultures). Second, NGF treatment increases and anti-NGF treatment reduces the number of AChE-positive neurons in cultures of low plating density, suggesting that NGF promotes survival of septal cholinergic neurons in these cultures. In cultures of high plating density, NGF increased the number of NGF-R and ChAT-positive neurons without affecting the number of AChE-positive neurons in these cultures. These results suggest that exogenous NGF is not required for survival of cholinergic neurons in high-density cultures but stimulates the expression of ChAT and NGF-R. Third, NGF stimulates fiber growth of septal cholinergic neurons, as assessed by computerized image analysis of AChE-positive neurons. Fourth, NGF specifically increases ChAT and AChE activities in septal cultures. These NGF-mediated increases in enzyme activities are more pronounced when neurons are grown together with glial cells. In pure neuronal cultures, NGF increased ChAT and AChE activities by 101 and 16%, and in mixed neuronal-glial cultures by 318 and 87%, respectively. Anti-NGF blocked the effects of NGF but failed to reduce ChAT and AChE activities below control levels in cultures of high plating density. Fifth, astrocytes attenuate the expression of ChAT and AChE by septal neurons in the absence of NGF.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call