Abstract

In this paper, we propose a novel method to derive the interionic potentials for CaO and MgO in conjunction with ab initio calculation and empirical three-body interaction. By using the Chen–Mobius lattice inversion, the pairwise interaction between cations and anions can be evaluated from multiple virtual structures. The quantum-chemistry calculation is carried out to derive the short-range potential for the same species of ions. Empirical three-body interactions are then adopted to heal the drawbacks arising from purely pairwise potential, such as Cauchy relation. The proposed potential is verified by molecular dynamics simulations of some primary properties, including pressure and temperature dependence of lattice constant, elastic constants and phase transition of CaO and MgO. Simulation results are in good agreement with the existing experimental data and ab initio calculations, showing that the developed potentials are valid over a wide range of interionic separations. It is believed that this approach can be readily extended into other materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.