Abstract

T cell populations from BALB/c mice at different ages were analyzed to determine when in development Ts cells specific for the anti-mouse RBC (MRBC) autoantibody response become activated. Previous studies have shown that adult CD8+ T cells actively suppress this autoimmune response and adult spleen cells depleted of CD8+ cells can generate an anti-MRBC response in culture with MRBC. The present results demonstrate that T cells from mice less than 1 wk of age do not suppress the in vitro anti-MRBC response of adult spleen cell populations depleted of CD8+ Ts cells. By 2 wk of age Ts cells are detectable in this anti-self response and reach adult levels by 3 wk of age. Non-specific "natural suppressor" cells normally present in neonatal spleen cell populations are unable to suppress this autoantibody response, although they are active in suppressing anti-SRBC responses in the same cultures. Before the appearance of Ts cells active in the anti-MRBC response, neonatal spleen cell populations can generate anti-MRBC antibody-forming cells, both spontaneously in vivo and in vitro. The in vitro anti-MRBC response of neonatal spleen cells was shown to be Ag driven and Ag specific. The ability of unfractionated spleen cells to generate this response in vitro declines with age and is relatively low by 3 wk. This decline in responsiveness occurs simultaneously with the appearance of suppression specific for the anti-MRBC response, suggesting that the two events may be causally related.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.