Abstract

Wheat gluten, a byproduct of the wheat starch industry, is widely used as a dough strengthener and gelling agent. In this research, we developed novel double-network hydrogels by gelation of gluten using in situ metal-catechol coordination. The first network consisted of physically associated gluten molecules, while the second network consisted of Fe3+-cross-linked proanthocyanidins (PACs). Dynamic shear rheology experiments suggested that coordination of Fe3+ and PACs greatly enhanced the mechanical properties of the gluten hydrogels. The double-network hydrogels exhibited a 3-fold higher shear modulus than pure gluten hydrogels. The formation of bis- and tris-catechol-Fe3+ complexes between Fe3+ and PACs in the hydrogels was confirmed by ultraviolet-visible spectrometry and isothermal titration calorimetry (ITC). The ITC measurements of Fe3+ binding to PACs indicated a molar stoichiometry of 1:4 and a dissociation constant ( KD) of 24.9 × 10-9. When subject to repeated shear deformation-compression cycles, the hydrogels exhibited strong and rapid recovery of their rheological properties. The strong, self-healing characteristics of the double-network gluten hydrogels produced in this study may be useful for certain applications in the food, agriculture, biomedicine, and tissue-engineering industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.