Abstract

When a high-velocity flow discharges into a chute, air is entrained through the free surface. This is relevant to the development of self-aeration for mixture flow. In this study, the air concentration was measured in the self-aerated developing region for various initial flow velocities, depths, and chute slopes. The effect of hydraulic conditions on the bottom self-aeration process was analyzed. Increasing the initial flow velocity and depth was found to increase the rate of air diffusion into the water flow. This positive correlation indicates that flow turbulence is a key factor for the self-aeration development process. The Reynolds number of the flow was found to be an appropriate hydraulic condition for describing self-aeration development. In addition, the constraint of buoyancy on air bubble diffusion into the chute bottom decreased as the chute slope was increased, which made the development process for bottom self-aeration more pronounced. A new empirical equation is presented for predicting the development process of bottom self-aeration in open channel flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.