Abstract

Abstract. Seasonal climate forecast products offer useful information for farmers supporting them in planning and making decisions in their management practices, such as crop choice, planting and harvesting time, and water management. Driven by the need of stakeholders for tailored seasonal forecast products, our goal was to assess the applicability of seasonal forecast outputs in agriculture and to develop and pilot with stakeholders a set of seasonal climate outlooks for this sector in Finland. Finnish end users were involved in both the design and testing of the outlooks during the first pilot season of 2019. The seasonal climate outlooks were developed using the SEAS5 seasonal forecast system provided by ECMWF. To improve the prediction skill of the seasonal forecast data, several bias adjustment approaches were evaluated. The tested methods increased the quality of temperature forecast, but no suitable approach was found for eliminating the biases from precipitation data. Besides the widely applied indices, such as mean temperature, growing degree days, cold spell duration, total precipitation and dry conditions, new sector-oriented indices (such as progress of growing season) have been implemented and issued for various lead times (up to 3 months). The first result of forecast evaluation, the development of seasonal forecast indices and the first pilot season of May–October 2019 are presented. We found that the temperature-based outlooks performed well, with better performance skills for short lead times, providing useful information for the farmers in activity management. Precipitation indices had poor skills for each forecasted month, and further research is needed for improving the quality of forecast for Finland. The farmers who have tested the seasonal climate outlooks considered those beneficial and valuable, helping them in planning their activities. Following the first pilot season, further research and implementation work took place to improve our understanding of the skill of seasonal forecasts and increase the quality of tailored seasonal climate services.

Highlights

  • In northern Europe, special features of climate represent risks for farmers in managing agricultural systems

  • Seasonal climate forecasts (SCFs) have a large potential to improve productivity, their utilization for decision making in agriculture in Europe has been relatively limited (Bruno Soares and Dessai, 2016). This is partly due to the limited skill of forecast systems in this region (Doblas-Reyes et al, 2013; Bruno Soares, 2017) and because users are not aware that such forecasts are available, and sometimes the information provided by the forecasts is ineffective (Bruno Soares and Dessai, 2016)

  • The first results of our experiment in developing and testing new seasonal climate services for agriculture with limited resources are presented in this paper, including applicability assessment of seasonal forecasts in Finland, the newly developed seasonal climate outlooks and the outcomes of the first pilot season

Read more

Summary

Introduction

In northern Europe, special features of climate represent risks for farmers in managing agricultural systems. These risks include harsh winter, very short growing season with generally low mean temperature, high risk of late and early season frost, early summer drought and high risk of abundant precipitation close to harvests, and the substantial seasonal and inter-annual variability (Peltonen-Sainio et al, 2009). Seasonal climate forecasts (SCFs) have a large potential to improve productivity, their utilization for decision making in agriculture in Europe has been relatively limited (Bruno Soares and Dessai, 2016) This is partly due to the limited skill of forecast systems in this region (Doblas-Reyes et al, 2013; Bruno Soares, 2017) and because users are not aware that such forecasts are available, and sometimes the information provided by the forecasts is ineffective (Bruno Soares and Dessai, 2016). The skill of seasonal forecasts over northern Europe has been grad-

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call