Abstract

Abstract There is a wide range of offshore structures which may be constructed byeither steel or concrete materials to be used in the arctic region, such assteel tower platforms, caisson-retained islands, shallow-water gravity-basecaisson, jack-up structures, bottom-founded deep-water structures, floatingstructures, well protectors, seafloor templates and breakwaters. One commonfeature of these structures is that they must be able to resist the highlateral forces from the floating ice and transmit these forces to thefoundation. This study explores the use of Steel-Concrete-Steel (SCS) curvedsandwich system for arctic caisson structures. SCS sandwich system, whichcombines the beneficial effects of steel and concrete materials, has promisingbenefits over conventional plates and stiffeners design and heavily reinforcedconcrete design because of their high strength-to-steel weight ratio and highresistance to contact and impact loads. Shear connectors have been proposed toprovide bonding between the external steel plates and high-performancecementitious core materials. Finite element analyses and large-scale testresults showed that SCS sandwich panels without mechanical bond enhancement arevulnerable to interfacial shear failure and impairment of structural integritywhen subject to shrinkage and thermal strains, accidental loads, and impact. The proposed SCS sandwich system features mass-produced mechanical shearenhancement and/or cross-ties. It can reduce structure complexity, particularlyin the number of weld joints which are prone to fatigue, hence increasingservice life, cutting down the cost of fabrication, and reducing the manpowercost to operate, inspect, and maintain the structure in the long run. Considering local ice load, the punching shear and shell bending strength ofthe SCS sandwich composite shell is studied experimentally. Test results showedthat the SCS sandwich panels, which are designed using the ISO ice load, arecapable of resisting the localized contact and punching loads causedthereby.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.