Abstract

Both exogenous and endogenous reactive oxygen species (ROS) in vulvovaginal candidiasis (VVC) play pivotal roles in promoting the hyphal formation of Candida albicans (CA), which suggests that clearing ROS could inhibit CA hyphae formation. A ROS-sensitive hydrogel (CAS@4Arm-PB/CS) was formulated by using a novel four-arm polyethylene glycol (4Arm-PEG) derivative (4Arm-PB) as a crosslinking agent, chitosan (CS) as the hydrogel matrix, and caspofungin (CAS) as the antifungal drug against CA. The ROS-sensitivity, disintegration mechanism, crosslinking action, swelling degree, microstructure, modulus, and rheological properties of 4Arm-PB were characterized. According to the results, 5.0 % 4Arm-PB could quickly and efficiently cross-link 0.5 mg/mL of CS. The ROS-sensitivity of 4Arm-PB was 10–50 μM, indicating a strong ROS sensitivity. The in vitro and in vivo anti-CA results indicated that CAS@4Arm-PB/CS not only cleared endogenous and exogenous ROS and inhibited the formation of CA hyphae and biofilm but also contributed beneficially to the treatment of VVC mice caused by CA infection, implying a certain safety aspect and an in vivo applicability. This research introduces a novel functional crosslinking agent for CS hydrogel formulation, presenting a new avenue for hydrogel-based drug delivery systems and therapeutic strategies for VVC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.