Abstract

Background: Keeping in mind the unceasingly escalating prevalence of coronary disease worldwide, the mortality rate is also expected to rise with a staggering increase in healthcare costs. Angiography is the gold standard for diagnosing these blockages that trigger these diseases. Amides and urethanes are the common catheter construction material used for angiography. However, the experimental evidence verifying the use of PEBAX® and comparing its performance with that of commercially available catheters for angiography is not published despite it being well recognized for its excellent flexural modulus, mechanical properties, and biocompatibility and its potential to reduce the incidence of vascular spasm during intravascular diagnostic and interventional procedures. Therefore, the aim of this study was to develop a PEBAX®-based angiographic catheter and evaluate its performance in comparison with three commercially available nylon- and polyurethane-based angiographic catheters. Methodology: A PEBAX®-based angiographic catheter was developed for this purpose. This study analyzes and reports the performance and behavior of PEBAX®-, nylon-, and polyurethane-based catheters. The catheter’s performance and arterial forces’ endurance nature were mapped out by evaluating pushability (advancement force) and selective bench tests outlined in the applicable regulatory standard. Conclusions: The PEBAX®-based catheter exhibited the least bond-flexural rigidity (180.4 g), which was approximately one-third of that shown by all six French catheters and which exhibited the least advancement force (510.4 g), which was approximately 50% less than that of the nylon- and polyurethane-based catheters when traversing through the mock arterial system. Bench testing was carried out as per the applicable regulatory standard; the differences obtained between individual catheters were discussed in detail. Based on this extensive in vitro assessment, it was concluded that the PEBAX®-based catheters outperformed the nylon- and polyurethane-based catheters, exhibiting an exceptionally minimal advancement force of 510.4 g. This leads to the inference that this catheter can inject more radiopaque material (because of the enhanced flow rate) to the coronary arteries and can play a significant role in minimizing vascular spasms during a diagnostic procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.