Abstract

Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at risk of developing significant morbidity and mortality. Current interferon-based therapies are suboptimal especially in patients infected with HCV genotype 3 (predominant genotype in Pakistan) and they are poorly tolerated, highlighting the requirement of new therapeutics. HCV non-structural protein-3 (NS3) protease and helicase domains are essential for viral replication; they are highly conserved among various HCV strains. In the current study, we enrolled 56 HCV infected patients from various regions of Pakistan and determined their genotypes, ALT level and virus titer. We have cloned and sequenced NS3/NS4A from 4 of the HCV Serum samples. Nucleotide sequence alignment showed high level of identities among 3a genotypes. One of the samples (NCVI 01) showed unique amino acids substitutions, including R9Q, L332P, L354I, I605V and S622C. Three dimensional structures were determined and analyzed effect of substitutions on amino acids interactions. We further established fluorescence resonance energy transfer (FRET) based assays for detecting proteolytic activity of (NS3–4A) serine protease, using AnaSpec peptide, for high throughput screening (HTS) inhibitors against HCV. In future, this study could be of great interest in the development of HCV NS3 cell-based HTS FRET assay for genotype 3a and subsequent antiviral testing of drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.