Abstract
The development of antiviral assays using an ATP/luminescence-based readout to profile antiviral compounds against the positive-strand RNA viruses: yellow fever virus (YFV), West Nile virus (WNV), Sindbis virus, and Coxsackie B virus, representing three virus families, is described. This assay readout is based upon the bioluminescent measurement of ATP in metabolically active cells. Antiviral efficacy was determined by measuring the ATP level in cells that were protected from the viral cytopathic effect (CPE) by the presence of antiviral compounds. The antiviral assay parameters were optimized and the assays were validated using a panel of different reference compounds to determine the intra- and inter-assay reproducibility. The signal-to-noise ratios for the yellow fever virus and West Nile virus assays were 7.5 and 36, respectively, comparing favorably with a signal-to-noise ratio of only 1.5 in the yellow fever virus neutral red dye uptake assay, an alternative readout for CPE inhibition. For Coxsackie B and Sindbis viruses, the signal-to-noise ratios were 40 and 50, respectively. These assays are robust, high-throughput, reproducible, and give much improved signal-to-noise ratios than those of dye uptake assays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.