Abstract

Retrotransposons are the largest group of transposable elements (TEs) that are ubiquitous and well dispersed in plant genomes. Transposition/insertion of TEs on chromosomes often generates unique repeat junctions (RJs) between TEs and their flanking sequences. Long terminal repeats (LTR) are well conserved and abundant in plant genomes, making LTR retrotransposons valuable for development of TE junction-based markers. In this study, LTR retrotransposons and their RJs were detected from chokecherry genome sequences generated by Roche 454 sequencing. A total of 1246 LTR retrotransposons were identified, and 338 polymerase chain reaction primer pairs were designed. Of those, 336 were used to amplify DNA from chokecherry and other rosaceous species. An average of 283 of 336 (84.2 %) LTR primer pairs effectively amplified DNA from chokecherries. One hundred and seventeen chokecherry LTR primers also produced amplification in other Prunus (99) or rosaceous species (19). A total of 59 of 78 polymorphic LTR markers were qualified for linkage map construction according to the segregation distortion Chi-square (χ 2) test. Forty-eight LTR markers were successfully located on a previously constructed chokecherry map. The majority of the LTR markers were mapped on LG XI of the chokecherry map. Our results suggest that LTR marker development using random genome sequences is rapid and cost-efficient. Confirmed applicability of LTR markers in map construction and genetic mapping will facilitate genetic research in chokecherry and other rosaceous species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.