Abstract

In this methodology, the thiourea (TU)sensor was made-up by means of glassy carbon electrode (GCE) layered by the wet-chemically prepared binary SnO2/V2O5 nanomaterials (NMs). The existence of SnO2 and V2O5 in prepared spherical NPs were categorized by X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray spectroscopy and X-ray Powder Diffraction (XRD). The TU sensor was displayed the linear responses in concentration range (LDR) of 0.1 nM ~ 0.01 mM. The calibration curve of TU sensor was made by plotting current verses concentration of TU, which was measured by electrochemical technique. The sensitivity and lower limit of detection (DL) for TU sensor were calculated from calibration curve, which are found as 17.0918 µAµM-1cm−2 and 95.40 ± 4.77 pM respectively. The analytical parameters of TU sensor such as reproducibility, response time and stability were measured and found efficient results. It also was validated in the detection of TU in presence of real bio-samples. Thus, this unique and prospective method is introduced to develop the selective biosensor by electrochemical approach, which might be a pioneer sensor probe for its simple and reliable approach for the safety of healthcare and biomedical fields in a large scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call