Abstract

In order to develop reduced-activation ferritic/martensitic steels potentially suitable for fusion reactor applications, the effect of principal alloying elements Cr, W and V on the micro- structural evolution, toughness and high-temperature creep strength was systematically investigated for relatively simple Cr-W-V steels. Based on the results on the simple steels, two kinds of martensitic 9Cr steels with low and high levels of W were alloy-designed: 9Cr-1WVTa and 9Cr-3WVTa. They exhibited excellent toughness and high-temperature strength. Irradiation hardening was the smaller for the reduced-activation 9Cr-1WVTa and 9Cr-3WVTa steels than for the conventional 9Cr-lMoVNb and it was smaller for the low W steel than for the high W steel. It is concluded that from the aspect of toughness the 9Cr-1WVTa steel is the most promising alloy for the first wall and blanket structures which will be operated at low temperatures below 773 K (500°C). Another 9Cr-3WVTa steel is the most promising in terms of high- temperature creep strength for the future power reactor structures which will be operated at temperatures higher than 773 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.