Abstract

Latent fingerprints provide crucial affirmations of identity in forensic science. However, they are microscopic. In this study, novel fluorescence materials, Ba2LaSbO6:Mn4+ (BLSO:Mn4+) phosphors, were developed by a sol–gel method for the fluorescence imaging of latent fingerprints. The structural properties of the phosphors were investigated by powder X-ray diffraction (XRD) and its Rietveld refinement analyses, and transmission electron microscopy and scanning electron microscopy techniques. The photoluminescence properties of the BLSO:Mn4+ phosphors were evaluated comprehensively by recording the emission, excitation, and decay curves. The BLSO:Mn4+ phosphors provide a high-intensity red emission at 677 nm under 350 nm excitation caused by the 2Eg→4A2g transition of Mn4+. The optimum concentration of Mn4+ in the BLSO host was determined to be ~0.2 mol%. The calculated Commission International de L'Eclairage (CIE) chromaticity coordinates (0.716, 0.283) of the emission from the BLSO:Mn4+ phosphor are located in the pure red region of the CIE 1931 diagram. The red-emitting BLSO:0.2Mn4+ phosphor was used as a fluorescence imaging powder for visualizing latent fingerprints on various substrates with high resolution, high contrast, and high efficiency, as well as good selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call