Abstract
Bacterial wilt caused by Ralstonia solanacearum is a serious soilborne disease that results in severe losses to tobacco (Nicotiana tabacum) production in China. In this study, a novel RPA-LFD assay for the rapid visual detection of R. solanacearum was established using recombinase polymerase amplification (RPA) and lateral-flow dipstick (LFD). The RPA-LFD assay was performed at 37°C in 30 min without complex equipment. Targeting the sequence of the RipTALI-9 gene, we designed RPA primers (Rs-rpa-F/R) and an LF probe (Rs-LF-probe) that showed high specificity to R. solanacearum. The sensitivity of RPA-LFD assay to R. solanacearum was the same as that in conventional PCR at 1 pg genomic DNA, 103 CFU/g artificially inoculated tobacco stems, and 104 CFU/g artificially inoculated soil. The RPA-LFD assay could also detect R. solanacearum from plant and soil samples collected from naturally infested tobacco fields. These results suggest that the RPA-LFD assay developed in this study is a rapid, accurate molecular diagnostic tool with high sensitivity for the detection of R. solanacearum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.