Abstract

This chapter highlights the in house development of low cost alternative FDM feedstock filament with tailor made properties. The experimental study was performed to fabricate (Nylon6-Al-Al2O3 based) alternative fused deposition modeling (FDM) feedstock filament in place of commercial acrylonitrile butadiene styrene (ABS) filament (having specific rheological and mechanical properties) for rapid manufacturing (RM) and rapid tooling (RT) applications. The detailed steps for fabrication of alternative FDM feedstock filament (as per field application) with relatively low manufacturing cost and tailor made properties have been highlighted. The rheological and mechanical suitability of Nylon6-Al-Al2O3 feedstock filament has been verified experimentally. The approach is to predict and incorporate essential properties such as flow rate, flexibility, stiffness, and mechanical strength at processing conditions and compared with commercial ABS material. The proportions of various constituents have been varied in order to modify and improve rheological behavior and mechanical properties of alternative FDM feedstock filament. The developed feed stock filament was loaded in commercial FDM setup without any change in hardware and software. The results of study suggest that the newly developed composite material filament has relatively poor mechanical properties but have high thermal stability and wear resistant as compared to ABS filament and hence can be used for tailor made applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.