Abstract

AbstractThis paper presents the essentials of the development of an integrated smart microsensor system that has been developed to monitor the motion and vital signs of humans in various environments. Integration of RF transmitter technology with complementary metal‐oxide‐semiconductor/micro electro mechanical systems (CMOS/MEMS) microsensors is required to realize wireless smart microsensors for the monitoring system. Sensors for the measurement of body temperature, perspiration, heart rate (pressure sensor), and motion (accelerometers) are candidates for integration on the wireless smart microsensor system. In this paper, the development of radio frequency transmitter (RF) that will be integrated on wireless smart microsensors is presented. A voltage controlled RF‐CMOS oscillator (VCO) has been fabricated for the 300‐MHz frequency band applications. Also, spiral inductors for an LC resonator and an integrated antenna have been realized with a CMOS‐compatible metallization process. The essential RF components have been fabricated and evaluated experimentally. The fabricated CMOS VCO showed a conversion factor from voltage to frequency of about 81 MHz/V. After matching the characteristic impedance (50 Ω) of the on‐chip integrated antenna and the VCO output, more than 5 m signal transmission from the microchip antenna has been observed. The transmitter showed remarkable improvement in transmission power efficiency by correct matching with the microchip antenna. Essential technologies of the RF transmitter for the wireless smart microsensors have been successfully developed. Also, for the 300‐MHz band application, the integrated RF transmitter, with the CMOS oscillator and the on‐chip antenna, has been successfully demonstrated for the first time. Copyright © 2007 Institute of Electrical Engineers of Japan© 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.