Abstract
The attractive properties of single-wall carbon nanotubes (SWCNT) such as mechanical strength and high electrical and thermal conductivity are often undercut by their agglomeration and re-agglomeration tendencies. As a result, the application of SWCNT as additives in advanced composite materials remain far from their potential, with proper dispersion being the major inhibitor. This work presents a dispersion quality control approach for water-based SWCNT dispersions (dispersed by a unique combination of physical and chemical methods), using complementary and easily scalable, characterization methods. UV-Vis spectroscopy, rheological measurements, and precipitant sheet resistance were used to understand the properties of the initial solution through processing and application. From an industrial perspective, these methods are fast and easy to measure while giving a repetitive and quick indication of dispersion quality and stability. The methods were correlated with microscopy and Raman spectroscopy to validate dispersion and SWCNT quality under various dispersing energies. The protocol was then applied to estimate the stability of SWCNT solutions, as well as the effectiveness of different surfactants in aiding dispersion. The simple, fast, and scalable combination of different characterizations provides good SWCNT dispersion and can be used as a quality control system for industrial production and usage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.