Abstract
A dataset comprising 55 chemicals with hepatocarcinogenic potency indices was collected from the Carcinogenic Potency Database with the aim of developing QSAR models enabling prediction of the above unwanted property for New Chemical Entities. The dataset was rationally split into training and test sets by means of a sphere-exclusion type algorithm. Among the many algorithms explored to search regression models, only a Support Vector Machine (SVM) method led to a QSAR model, which was proved to pass rigorous validation criteria, in accordance with the OECD guidelines. The proposed model is capable to explain the hepatocarcinogenic toxicity and could be exploited for predicting this property for chemicals at the early stage of their development, so optimizing resources and reducing animal testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.