Abstract

To achieve reliable transmission of detonation wave to a pulse detonation engine (PDE) combustor, authors have proposed a PDE initiator, which consists of a predetonator and a reflector. A detonation wave propagates around the reflector changing its shape through three transition processes; from planer to cylindrical, toroidal, and planar again. Our previous study revealed that the transition to the cylindrical detonation wave upstream of the board plays a significant role in detonating hydrogen-air mixture in a 100-mm-diam-combustor. A self-sustainable condition of the cylindrical detonation wave is severe when the radius of the wave front is small. In cases using hydrogen-oxygen mixture as driver gas for the 100-mm-diam-combustor, we had to fulfill with driver gas entire upstream of the board at the critical condition for the transition to the cylindrical wave. On the other hand, curvature of the cylindrical detonation wave front becomes smaller with increasing radius of the front, so the self-sustainable condition of the cylindrical wave must be mitigated for a large bore combustor. In this study, we investigated the necessary filling diameter of the driver gas to detonate hydrogen-air cylindrical detonation by using a 500-mm-diam-cylindrical-combustor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.