Abstract

Measurement of radiation levels in difficult-to-access and hazardous areas, such as hot cells, high active source storage areas, require refined and sensitive remote radiation level measurement techniques. Optical fiber dosimetry has been studied as an emerging method of monitoring radiation remotely and is suitable for use in confined environments that may be inaccessible using existing conventional electronic dosimeters or radiation survey meters. Being light weight and nonintrusive, optical fibers based dosimeters provide several advantages in the field of remote radiation dosimetry and in-vivo medical applications. A prototype fiber optic dosimetry system with extrinsic architecture is designed and developed using optically stimulated luminescence (OSL) technique at Radiological safety division, Indira Gandhi Centre for Atomic Research. The fiber optic dosimetry system uses OSL material like BaFBr: Eu to detect radiation and a bifurcated optical cable to illuminate the sensor with the suitable light source and also to guide the light from the sensor to the detector. Indigenously developed hardware is used for pulse processing and application software of the system is developed in Microsoft Visual Basic.Net. This paper depicts the characterization of the dosimetric material, development of hardware and software for the system and calibration of the system using standard source. The system uses Advantech APAX 5570 base controller with suitable modular add-on cards for data acquisition and controlling. Indigenously developed electronics is used for processing the pulses from the sensor attached to the tip of the bifurcated optical cable. The acquisition of the counts from the electronic circuit and illumination and bleaching time for the sensor pellet is controlled by application software developed in VB.Net. The system is calibrated by irradiating the pellet with different absorbed doses. The system explores the possibility of remote radiation monitoring using OSL technique in real time. The system is portable, simple to use and requires less user intervention to operate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call