Abstract

IntroductionInflammatory joint destruction in rheumatoid arthritis (RA) may be triggered by autoantibodies, the production of which is supported by autoreactive T cells. Studies on RA and animal models of the disease suggest that T cells recruited in the joints can locally initiate or propagate arthritis. Herein, we investigated the role of joint-homing versus lymphoid organ-homing T cells in the development of proteoglycan-induced arthritis (PGIA), an autoimmune model of RA.MethodsTo identify T cells migrating to the joints before and during development of autoimmune arthritis, we transferred fluorescence-labeled T cells, along with antigen-presenting cells, from BALB/c mice with PGIA to naïve syngeneic severe combined immunodeficient (SCID) mice. We then monitored the recruitment of donor T cells in the ankle joints and joint-draining lymph nodes of the recipients using in vivo two-photon microscopy and ex vivo detection methods. To limit T-cell access to the joints, we selectively depleted T cells in the blood circulation by treatment with FTY720, an inhibitor of lymphocyte egress from lymphoid organs. Reduction of T cell presence in both lymphoid organs and blood was achieved by injection of donor cells from which T cells were removed prior to transfer. T and B cells were quantitated by flow cytometry, and antigen (PG)-specific responses were assessed by cell proliferation and serum antibody assays.ResultsDespite development of adoptively transferred arthritis in the recipient SCID mice, we found very few donor T cells in their joints after cell transfer. Treatment of recipient mice with FTY720 left the T-cell pool in the lymphoid organs intact, but reduced T cells in both peripheral blood and joints. However, FTY720 treatment failed to inhibit PGIA development. In contrast, arthritis was not seen in recipient mice after transfer of T cell-depleted cells from arthritic donors, and serum autoantibodies to PG were not detected in this group of mice.ConclusionsOur results suggest that antigen-specific T cells, which home to lymphoid organs and provide help to B cells for systemic autoantibody production, play a greater role in the development and progression of autoimmune arthritis than the small population of T cells that migrate to the joints.

Highlights

  • Inflammatory joint destruction in rheumatoid arthritis (RA) may be triggered by autoantibodies, the production of which is supported by autoreactive T cells

  • The severe combined immunodeficient (SCID) mouse already had arthritis in the imaged ankle; no T cells were visible; only autofluorescent macrophages and second harmonic generation signals from collagen fibers [29] were detected in the synovial tissue (Figure 1c)

  • Here, we show that the development of autoimmune arthritis in an animal model of RA is not accompanied by a robust influx of T cells into the joints and that inflammation is rampant even if the availability of circulating T cells is profoundly reduced

Read more

Summary

Introduction

Inflammatory joint destruction in rheumatoid arthritis (RA) may be triggered by autoantibodies, the production of which is supported by autoreactive T cells. Induced autoimmune animal models of RA, including collagen-induced arthritis (CIA), glucose-6-phosphate isomerase (G6PI)-induced arthritis, and proteoglycan (PG)-induced arthritis (PGIA), are known to involve major histocompatibility complex (MHC) II-restricted antigen (Ag) presentation and generation of T cells and autoAbs that cross-react with self-(auto)Ags such as mouse type II collagen (CII), G6PI, and mouse PG (mPG) [6,7,8,9,10]. Both CIA and PGIA can be adoptively transferred to syngeneic immunocompromised mice by lymphocytes isolated from arthritic donors [11,12,13]. With regard to autoimmune diseases, the consensus is that upon entry into the joints from the bloodstream, ‘armed’ effector T cells can provide cytokine/chemokine stimuli to surrounding cells and act in concert with these cells to trigger and maintain a local inflammatory process [16,17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call