Abstract
Gluten-free (GF) diets often become nutritionally imbalanced, being low in proteins and fibers and high in sugars. Preparing GF foods with improved nutritional value is therefore a key challenge. This study investigates the impact of different combinations of whey protein (11.9%), inulin (6.0%) as dietary fiber, and xylitol (27.9%) as a sweetener used in the enrichment of green- and red-lentil-based gluten-free cookies. The cookies were characterized in terms of baking loss, geometric parameters, color, texture, and sensory profile. The results showed that these functional ingredients had different impacts on the lentil cookies made of different (green/red) lentils, especially regarding the effect of fiber and xylitol on the volume (green lentil cookies enriched with fiber: 16.5 cm3, sweetened with xylitol: 10.9 cm3 vs. 21.2 cm3 for control; red lentil cookies enriched with fiber: 21.9 cm3, sweetened with xylitol: 21.1 cm3 vs. 21.8 cm3 for control) and color (e.g., b* for green lentil cookies enriched with fiber: 13.13, sweetened with xylitol: 8.15 vs. 16.24 for control; b* for red lentil cookies enriched with fiber: 26.09, sweetened with xylitol: 32.29 vs. 28.17 for control). Regarding the textural attributes, the same tendencies were observed for both lentil products, i.e., softer cookies were obtained upon xylitol and whey protein addition, while hardness increased upon inulin enrichment. Stickiness was differently influenced by the functional ingredients in the case of green and red lentil cookies, but all the xylitol-containing cookies were less crumbly than the controls. The interactions of the functional ingredients were revealed in terms of all the properties investigated. Sensory analysis showed that the addition of whey protein resulted in less intensive "lentil" and "baked" aromas (mostly for red lentil cookies), and replacement of sugar by xylitol resulted in crumblier and less hard and crunchier products. The application of different functional ingredients in the enrichment of lentil-based gluten-free cookies revealed several interactions. These findings could serve as a starting point for future research and development of functional GF products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.