Abstract

The objective of the present study was to screen oils and suspending agents for the formulation of novel progesterone (PGT) suspension, demonstrating improved solubility, drug release, stability, and non-allergenicity. Presumably, formulated novel PGT suspensions could supersede clinically available peanut oil and lecithin based formulations (PL). The PGT suspensions were formulated by the trituration method using a vehicle (Moringa oil/peanut oil/sesame oil/sunflower oil) and a suspending agent (Neusilin US2/Fujicalin/Lecithin/Syloid 244) separately. A total of 16 PGT suspensions were evaluated for particle size, zeta potential, sedimentation, thixotropy, stability, in vitro dissolution, and allergenicity. Indeed, in silico studies were performed to elucidate interactions between principal components of the suspension, using software V. life MDS 4. 6. Findings revealed the highest PGT solubility and high viscosity in Moringa oil-based formulations. Suspensions comprising Moringa oil and Neusilin US2 (MN) exhibited the lowest suspensiod size (48.7 nm), least sedimentation rate, highest zeta potential (− 39.8), and dilatent flow behavior. The in vitro percent cumulative PGT dissolved was significantly high (94.82 ± 2.56%) from MN vis PL (52.68 ± 2.62%), at p < 0.05. In silico studies revealed strong hydrophobic and Van der Waals interactions between PGT, Moringa oil, and Neusilin US2, compared with others. Allergenicity study confirmed the superiority of Moringa oil over peanut oil (p < 0.01). Moringa oil-based PGT formulations containing Neusilin US2 could be a better alternative to clinically available peanut oil and lecithin-based suspensions. Additionally, in silico interaction tools can be effectively employed for the prediction of stability and performance of suspensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call