Abstract

Purpose: Although several clinical nomograms predictive of biochemical failure-free survival (BFFS) for localized prostate cancer exist in the medical literature, making valid comparisons can be challenging due to variable definitions of biochemical failure, the disparate distribution of prognostic factors, and received treatments in patient populations. The aim of this investigation was to develop and validate clinically-based nomograms for 5-year BFFS using the ASTRO II “Phoenix” definition for two patient cohorts receiving low-dose rate (LDR) brachytherapy or conventionally fractionated external beam radiation therapy (EBRT) from a large Canadian multi-institutional database.Methods and Materials: Patients were selected from the GUROC (Genitourinary Radiation Oncologists of Canada) Prostate Cancer Risk Stratification (ProCaRS) database if they received (1) LDR brachytherapy ≥ 144 Gy (n=4208) or (2) EBRT ≥ 70 Gy (n=822). Multivariable Cox regression analysis for BFFS was performed separately for each cohort and used to generate clinical nomograms predictive of 5-year BFFS. Nomograms were validated using calibration plots of nomogram predicted probability versus observed probability via Kaplan-Meier estimates.Results: Patients receiving LDR brachytherapy had a mean age of 64 ± 7 years, a mean baseline PSA of 6.3 ± 3.0 ng/mL, 75% had a Gleason 6, and 15% had a Gleason 7, whereas patients receiving EBRT had a mean age of 70 ± 6 years, a mean baseline PSA of 11.6 ± 10.7 ng/mL, 30% had a Gleason 6, 55% had a Gleason 7, and 14% had a Gleason 8-10. Nomograms for 5-year BFFS included age, use and duration of androgen deprivation therapy (ADT), baseline PSA, T stage, and Gleason score for LDR brachytherapy and an ADT (months), baseline PSA, Gleason score, and biological effective dose (Gy) for EBRT.Conclusions: Clinical nomograms examining 5-year BFFS were developed for patients receiving either LDR brachytherapy or conventionally fractionated EBRT and may assist clinicians in predicting an outcome. Future work should be directed at examining the role of additional prognostic factors, comorbidities, and toxicity in predicting survival outcomes.

Highlights

  • The treatment of localized prostate cancer in Canada has been evolving over the past few decades to reflect advances in our understanding of the disease and improvements in technology

  • Patients receiving low-dose rate (LDR) brachytherapy had a mean age of 64 ± 7 years, a mean baseline PSA of 6.3 ± 3.0 ng/mL, 75% had a Gleason 6, and 15% had a Gleason 7, whereas patients receiving external beam radiation therapy (EBRT) had a mean age of 70 ± 6 years, a mean baseline PSA of 11.6 ± 10.7 ng/mL, 30% had a Gleason 6, 55% had a Gleason 7, and 14% had a Gleason 8-10

  • Clinical nomograms examining 5-year biochemical failure-free survival (BFFS) were developed for patients receiving either LDR brachytherapy or conventionally fractionated EBRT and may assist clinicians in predicting an outcome

Read more

Summary

Introduction

The treatment of localized prostate cancer in Canada has been evolving over the past few decades to reflect advances in our understanding of the disease and improvements in technology. Much of the existing literature to improve clinical decision making in prostate cancer management has been directed at the development and refinement of existing prognostic risk stratification systems and nomograms, often based on clinical endpoints (survival or biochemical) [3]. Many of the existing risk stratification systems are dominated by a set of three key prognostic factors – pre-treatment PSA, T stage, and Gleason score – each of which has been extensively validated to independently predict for a variety of clinical endpoints across a range of non-metastatic prostate cancer populations [3, 9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call