Abstract

A preform moulding technique using expanded graphite is developed to manufacture composite bipolar plates for proton exchange membrane fuel cells (PEMFCs). The preform is composed of expanded graphite, graphite flake and phenol resin. Preforms utilizing the tangled structure of expanded graphite are easily fabricated at a low pressure of 0.07–0.28 MPa. A pre-curing temperature (100 °C) slightly above the melting point of phenol powders (90 °C) induces moderate curing, but also prevents excessive curing. After the preform is placed in a steel mould, compression moulding is carried out at high pressure (10 MPa) and temperature (150 °C). The fabrication conditions are optimized by checking the electrical conductivity, flexural strength and microstructure of the composite. The optimized electrical conductivity and flexural strength, 250 S cm −1 and 50 MPa, respectively, met the requirements for PEMFC bipolar plates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.