Abstract
In this communication, we review recent studies by these authors for modeling the -H equilibrium. With the aim of estimating the solubility of pure hydrocarbon hydrate former in pure water in equilibrium with gas hydrates, a thermodynamic model is introduced based on equality of water fugacity in the liquid water and hydrate phases. The solid solution theory of Van der Waals-Platteeuw is employed for calculating the fugacity of water in the hydrate phase. The Henry's law approach and the activity coefficient method are used to calculate the fugacities of the hydrocarbon hydrate former and water in the liquid water phase, respectively. The results of this model are successfully compared with some selected experimental data from the literature. A mathematical model based on feed-forward artificial neural network algorithm is then introduced to estimate the solubility of pure hydrocarbon hydrate former in pure water being in equilibrium with gas hydrates. Independent experimental data (not employed in training and testing steps) are used to examine the reliability of this algorithm successfully.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.