Abstract

For survival endpoints in subgroup selection, a score conversion model is often used to convert the set of biomarkers for each patient into a univariate score and using the median of the univariate scores to divide the patients into biomarker-positive and biomarker-negative subgroups. However, this may lead to bias in patient subgroup identification regarding the 2 issues: (1) treatment is equally effective for all patients and/or there is no subgroup difference; (2) the median value of the univariate scores as a cutoff may be inappropriate if the sizes of the 2 subgroups are differ substantially. We utilize a univariate composite score method to convert the set of patient's candidate biomarkers to a univariate response score. We propose applying the likelihood ratio test (LRT) to assess homogeneity of the sampled patients to address the first issue. In the context of identification of the subgroup of responders in adaptive design to demonstrate improvement of treatment efficacy (adaptive power), we suggest that subgroup selection is carried out if the LRT is significant. For the second issue, we utilize a likelihood-based change-point algorithm to find an optimal cutoff. Our simulation study shows that type I error generally is controlled, while the overall adaptive power to detect treatment effects sacrifices approximately 4.5% for the simulation designs considered by performing the LRT; furthermore, the change-point algorithm outperforms the median cutoff considerably when the subgroup sizes differ substantially.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.