Abstract
Palm oil is a plantation commodity that snowballs when compared to other plantation crops such as coffee or cocoa. The Indonesian palm oil industry has a comparative advantage in the form of a large area of land and the lowest production cost of Crude Palm Oil (CPO) in the world. Indonesia's palm oil production in August 2019 recorded an increase of 14% over the same period in 2018. However, the amount of Indonesia's CPO production can still be optimized and increased. The amount of CPO production is very dependent on several factors, such as weather conditions, land area, and the number of Fresh Fruit Bunches (FFB). To help the Palm Oil Mill (POM), this study compares three data mining algorithms to predict the amount of CPO production based on the number of FFBs. The algorithms being compared are multilayer perceptron (MLP), support vector regression (SVR), and linear regression (LR). Based on test results using test data from a palm oil company in Indonesia, the SVR algorithm can provide higher accuracy than the other two algorithms. The SVR gets a PTA value of 0.694, MSE of 955.002, MAPE of 55.169, and MAD of 22.227. Then, we developed a prototype that applied the SVR algorithm to predict the amount of CPO production. The SQA test results on the prototype resulted in 80.225 software quality in the good category.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.