Abstract

Poly(vinyl alcohol) (PVA) is a biodegradable, water-soluble membrane that has low methanol permeation and reactive chemical functionalities. Modification of these features makes PVA an attractive proton exchange membrane (PEM) alternative to NafionTM. However, the pristine PVA membrane is a poorer proton conductor than the NafionTM membrane due to the absence of negatively charged ions. Hence, modification of PVA matrixes whilst complying with the requirements of projected applications has been examined extensively. Generally, three modification methods of PVA membranes have been highlighted in previous reports, and these are (1) grafting copolymerization, (2) physical and chemical crosslinking, and (3) blending of polymers. The use of each modification method in different applications is reviewed in this study. Although the three modification methods can improve PVA membranes, the mixed method of modification provides another attractive approach. This review covers recent studies on PVA-based PEM in different fuel cell applications, including (1) proton-exchange membrane fuel cells and (2) direct-methanol fuel cells. The challenges involved in the use of PVA-based PEM are also presented, and several approaches are proposed for further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.