Abstract

Thin film silicon solar cells on low cost foreign substrates could be attractive for highly efficient and low cost production of photovoltaic electricity. An attempt has been made to synthesise high-quality continuous polycrystalline silicon (pc-Si) layers on flexible metallic substrates using aluminium induced crystallization (AIC) for the first time. Amorphous silicon films deposited by ECR-PECVD were crystallized on diffusion barrier coated metallic substrates at lower temperatures (<577°C). The crystallization was studied using Raman as well as UV reflectance spectroscopy. The as-grown AIC pc-Si films were found to be continuous and densely packed without amorphous phase. The migration of impurities from the substrate to the pc-Si films and the conformability of the barrier layer with the substrate and pc-Si films were studied systematically in terms of chemical and stress level analysis, which are the important aspects to be considered when metallic foils are used as substrates. It was observed that the barrier layer also serves as a buffer layer to minimise the stress level enormously in the AIC grown pc-Si layer, though the supporting material has a thermal expansion coefficient of higher order at higher annealing temperatures. The present investigation proves the possibility to grow better-quality polycrystalline silicon films on flexible metallic foils and further demonstrates the steps that need to be considered to improve the quality of AIC pc-Si films as well as the strength of the barrier layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call