Abstract

Nonviral vectors, with their low immunogenicity and lack of pathogenicity, offer significant promise for siRNA therapy with fewer safety concerns. Nonviral vectors were also preferred in most transient siRNA delivery due to their ease of preparation. Previously, we incorporated tertiary amines and polyethylene glycol (PEG) into poly(ester urethane) to synthesize a soluble poly(amino ester glycol urethane), PaE(G)U, as a novel DNA transfection reagent for transgene delivery. The aim of this study was to develop PaE(G)U/siRNA polyplexes for gene silencing. We characterized the properties of PaE(G)U/siRNA polyplexes and compared them with those of PaE(G)U/DNA polyplexes. Using the Alexa Fluor 488-labeled, nonsilencing control siRNA as the reporter, we visualized cellular uptake of PaE(G)U/siRNA polyplexes and optimized the mass ratio of PaE(G)U/siRNA for delivery at 80/1. At this ratio, the average diameter of polyplexes was 540 nm, which was significantly larger than the average diameter of PaE(G)U/DNA polyplexes at 155 nm for efficient DNA delivery. Using the optimized PaE(G)U/siRNA polyplexes, transient silencing of constitutive luciferase expression (up to 92%) was achieved in our recombinant human HT-1080 fibroblast model via anti-luciferase siRNA delivery. In conclusion, PaE(G)U/siRNA polyplexes were developed and optimized for cellular uptake to allow efficient gene silencing. Engineering of soluble biodegradable polymers to incorporate amino, ester, PEG, and urethane units in the backbone constitutes a useful approach for the future design of siRNA carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.