Abstract
We propose a transfer technique of single-wall carbon nanotube (SWCNT) films to be applied to a wide variety of flexible electronic devices. SWCNT films were first heat-treated in advance to remove solvents and dispersants in the films on high heat-resistant Cu substrates and were then poly (methyl methacrylate)-supported transferred onto low heat-resistant polyethylene terephthalate and paper substrates. We characterized the flexibility and electrical properties of the films transferred by this technique. The transferred films showed high flexibility and high electrical conductivity (8.4 × 104 ∼ 1.1 × 105 S/m). X-ray photoelectron spectroscopy measurements revealed that the transferred films were free from Fe residues. Although a slight amount of the Cu residues existed, it was found that the residues did not contributed to the electrical conduction. By using this technique, we enabled to fabricate highly flexible and highly electrical conductive SWCNT films on flexible substrates with low heat resistance, which provide further potential for the application of these films to flexible electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.