Abstract

Recent advances in the development of perfectly matched layer (PML) as absorbing boundary conditions for computational aeroacoustics are reviewed. The PML methodology is presented as a complex change of variables. In this context, the importance of a proper space–time transformation in the PML technique for Euler equations is emphasized. A unified approach for the derivation of PML equations is offered that involves three essential steps. The three-step approach is illustrated in details for the PML of linear and non-linear Euler equations. Numerical examples are also given that include non-reflecting boundary conditions for a ducted channel flow and mixing layer roll-up vortices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.