Abstract

Intracellular protein delivery systems have great potential in the fields of therapeutics development and biomedical research. However, targeted delivery, passing through the cell membrane without damaging the cells, and escaping from endosomal entrapment of endocytosed molecular cargos are major challenges of the system. Here, we present a novel intracellular protein delivery system based on modularly engineered botulinum neurotoxin type A (BoNT/A). LHNA domain, consisting of light chain and endosomal escape machinery of BoNT/A, was genetically fused with SpyCatcher (SC) and EGFR targeting affibody (EGFRAfb) to create SC-LHNA-EGFRAfb, a target-specific and protein cargo-switchable BoNT/A-based intracellular protein delivery platform. SC-LHNA-EGFRAfb was purely purified in large quantities, efficiently ligated with multiple ST-fused protein cargos individually, generating a variety of protein cargo-containing intracellular delivery complexes, and successfully delivered ligated protein cargos into the cytosol of target cells via receptor-mediated endocytosis, followed by endosomal escape and subsequent cytosolic delivery. SC-LHNA-EGFRAfb enhanced intracellular delivery efficiency of protein toxin, gelonin, by approximately 100-fold, highlighting the crucial roles of EGFRAfb and LHNA domain as a targeting ligand and an endosomal escape machinery, respectively, in the delivery process. The BoNT-based plug-and-deliverable intracellular protein delivery system has the potential to expand its applications in protein therapeutics and manipulating cellular processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.