Abstract

AbstractPlasma treatments are gaining popularity in the textile industry due to their numerous advantages over conventional wet processing techniques. In this study, nonwoven fabrics spunbond polypropylene, polyester basis weight of 25 g/m2 and microporous PTFE film were used to develop tri-laminate antiviral surgical gown. The outer layer of spunbond polypropylene was treated with plasma enhanced fluorocarbon. The plasma treated polypropylene was also treated with titanium nano dispersion finish in a single bath pad-dry-cure method. The pore sizes of nonwoven fabrics were characterized using tri-nocular microscope. The titanium nano finished polypropylene was characterized by scanning electron microscope. The tri-laminate surgical gown was developed with outer layer of plasma treated polypropylene, middle layer of PTFE and inner layer of polyester nonwoven. Liquid barrier properties of surgical performance were analyzed by viral penetration, antibacterial, spray impact penetration, hydrostatic resistance, tensile properties and moisture vapour permeability to estimate their suitability for antiviral surgical gown. It is observed that plasma treated gown shows 99.04% bacterial reduction as compared to untreated, thus providing barrier against microbes. The plasma treatment does not alter the weight and tensile properties of surgical gown. The developed plasma enhanced flurocarbon treated tri-laminate surgical gown offer sufficient liquid barrier properties for level 4 protection as per Association for the Advancement of Medical Instrumentation classification. Moisture vapour transfer rate of plasma treated tri-laminate gown decreased by 21% in comparison with untreated nonwoven gown.

Highlights

  • Surgical gown should be made out of liquid proof fabric to protect the blood-borne infectious microbes from penetrating through the fabric

  • Several blood borne pathogens have the potential to spread in this manner, the most important being the HIV and the hepatitis B virus, which are related to AIDS and hepatitis (Loveday et al 2007)

  • Liquid barrier properties of surgical performance were analyzed by viral penetration, antibacterial, spray impact penetration, hydrostatic resistance, tensile properties and moisture vapour permeability

Read more

Summary

Introduction

Surgical gown should be made out of liquid proof fabric to protect the blood-borne infectious microbes from penetrating through the fabric. Surgical gowns should provide an effective protective barrier against the transfer of microorganisms, particulates and fluids, in addition to acting as an aseptic barrier for the patient’s protection, in order to minimize strike-through and the potential for personnel contamination (Rutala and Weber 2001). In an operating room, a patient’s blood can penetrate surgical gown material and possibly contaminate the surgeon’s skin, if not well protected. Several blood borne pathogens have the potential to spread in this manner, the most important being the HIV and the hepatitis B virus, which are related to AIDS and hepatitis (Loveday et al 2007)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call