Abstract

The design, synthesis, and antiplasmodial activity of antimalarial heterodimers based on the 1,4-bis(3-aminopropyl)piperazine linker is reported. In this series key structural elements derived from quinoline antimalarials were coupled to fragments capable of coordinating metal ions. Biological evaluation included determination of activity against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains. Some of the novel compounds presented high activity in vitro against chloroquine-resistant strains, more potent than chloroquine and clotrimazole. Computational studies revealed that the activity is likely due to the ability of the compounds to assume a multisite iron coordinating geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.