Abstract

Abstract The physical–chemical surrogate models for S-8, Jet-A, and RP-3 fuels to capture their physical and kinetics properties have been developed in this study. n-dodecane (nC12H26), 2,5-dimethylhexane (C8H18-25), and toluene (C6H5CH3) were chosen as candidate surrogate components and formulated by the function group based surrogate fuel methodology. Some important physical properties and spray characteristics for S-8, Jet-A, and RP-3 surrogate models were validated. The results indicate that present surrogate models can well emulate various physical properties to accurately reproduce the spray characteristics. Then, a minimal and high-precision surrogate skeletal mechanism that can be suitable for computational fluid dynamics (CFD) simulations was developed and validated against some fundamental combustion experiments for each surrogate component. Furthermore, the performances of surrogate models that contain the surrogate formulation and associated skeletal mechanisms were validated against the experimental data on ignition delay times (IDTs), species concentration profiles, and laminar flame speeds (Su0) in a wide range of conditions. Finally, the surrogate fuels were used to combustion CFD simulations to model the spray combustion process in a constant volume combustion chamber. It can be seen that the agreements between the simulation and experiment in fundamental and spray combustion characteristics are reasonably good, which proves that present surrogate models are accurate and robust to be applied in CFD simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.