Abstract

Introduction: Hydrogels have gained prominence in a variety of fourth industrial revolution applications, including three-dimensional (3D) printing. However, there are limitations to 3D manufacturing, such as deformities in the final product. This is a significant obstacle to adopting this technology in the pharmaceutical industry, as printed products may have insufficient mechanical properties and a high brittleness, making further processing of these dosage forms problematic. The objective of this study is to produce a new 3D bioink from a mixture of locally produced pectin-based material from durian rind waste and cellulose-based material (pectin/cellulose hydrogel) and to partially characterize the bioink hydrogel. Methods: Four formulations of pectin/cellulose-based hydrogel (3:1, 3:2, 4:1, and 5:3 ratio of pectin/cellulose) from durian rind waste and carboxymethyl cellulose (CMC) powder, as well as cross-linking agents, were developed and evaluated using a rheometer to evaluate viscoelastic properties, FTIR Spectroscopy to identify compounds, and thermogravimetric analysis (TGA) to evaluate thermal stability. Results: All bioink formulations exhibit outstanding shear-thinning behavior suitable for 3D printing. The viscosity of edible ink increases as the pectin/cellulose concentration increases. The formulation of 3:1 pectin/cellulose has greater heat resistance than others (highest thermal stability with 21.69% of residual weight) and the lowest percentage of weight loss (76.18%). Conclusion: The study of a pectin/cellulose hydrogel mixture provides an attractive outcome for the creation of bioink due to the effective synthesis of 3D printing shapes that are both smooth and uniform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.