Abstract

Any industrial or power sector application requires a pulse width modulation (PWM) inverter. Industrial drives, in particular, are highly concerned with industrial standards. To satisfy the voltage source inverter (VSI) drives objects, a variety of PWM approaches are used, including inverter DC input voltage utilizations, suppression of higher and lower order of harmonics, as well as spreading harmonics acoustic noise reduction, among others PWMs. One of the better approaches for minimizing noise on voltage source three-phase inverter fed drives is random pulse width modulation (RPWM). Despite the fact that these described RPWM approaches are superior in terms of harmonic spreading and mitigation, these methods are unable to achieve the target DC-link utilizations. As a result, the focus of this paper is on combining multicarrier RPWM principles with space vector PWM (SVPWM) to produce multi-carrier random SVPWM (MCRSVPWM). The suggested PWM generates random unsystematic triangle carrier (5 kHz, 2.5 kHz, 1.25 kHz, 1 kHz) based pulses, whereas the traditional random PWM techniques are uses a fixed frequency triangular carrier to generate random pulse positions. Asynchronous induction motor driving simulation is carried out using MATLAB/Simulink. The proposed MCRSVPWM is put to the test with a 2-kW six-switch VSI-fed induction motor drive system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.