Abstract

A method has been developed for the atmospheric sampling and analysis of four perfluorocarbon tracer (PFT) compounds simultaneously at the parts per trillion (ppt) level. PFTs were pre-concentrated using adsorbent tube air sampling. Analysis was achieved by thermal desorption (TD) and gas chromatography (GC) with electron capture detection (ECD). Efficient separation of the PFTs from the other sample constituents was achieved by use of a capillary porous layer open tubular (PLOT) GC column without the need to cool the GC oven to sub-ambient temperatures using liquid coolants (M. de Bortoli and E. Pecchio, J. High Resolut. Chromatogr., 1985, 8, 422) or for a catalytic destruction step to remove interferents (T. W. D'Ottavio, R. W. Goodrich and R. N. Dietz, Environ. Sci. Technol., 1986, 20, 100). Results from test field trials with two volatile PFTs that were buried to simulate an underground leaking cable were successful. The PFTs were detected above ground level to pinpoint the leak position. The highest tracer concentrations were detected within 1 m of the simulated leak positions 2 days after tracer burial. The developed technology was applied to an oil leaking high voltage electricity cable. One PFT was added to the cable oil which enabled detection of the oil leak to within 3 m. The reported method has many advantages over currently used leak detection methods and could, in the future, be applied to the detection of underground leaks in a variety of cables and pipes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call