Abstract

Blockade of the interaction of the immune checkpoint receptor programmed cell death protein (PD)-1 and its ligand PD-L1 has been found to be a promising cancer treatment. Our previous studies identified that nABPD1 competed with PD-L1 to bind PD-1. The aim of this study was to evaluate the efficacy and safety of anti-tumor immunotherapy of ICIK cells conjugated with peptides in vivo and in vitro. Here, we synthesized the nABPD1 derivatives SBP1 and SBP2 and showed that their binding efficiency to PD-1-positive improving cytokine-induced killer (ICIK) cells was 98 and 82%, respectively. The cytotoxicity of ICIK cells to T-cell acute lymphoblastic leukemia (T-ALL) cells was increased by conjugating with SBP1 or SBP2, which was 2 times higher than that of ICIK cells alone. Furthermore, mice experiments showed that the fluorescence intensity of leukemia cells in T-ALL xenograft models was reduced by more than 95%, indicating that the peptides enhanced the therapeutic effect in vivo, while morphological evaluations showed that the peptides had no toxicity to important organs. Therefore, peptide-cell conjugates (PCCs) may be a novel method to improve the efficacy of cancer immunotherapy by blocking PD-1 in T-ALL patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.