Abstract

BackgroundIn common wheat (Triticum aestivum L.), allelic variations in the high-molecular-weight glutenin subunits Glu-B1 locus have important effects on grain end-use quality. The Glu-B1 locus consists of two tightly linked genes encoding x- and y-type subunits that exhibit highly variable frequencies. However, studies on the discriminating markers of the alleles that have been reported are limited. Here, we developed 11 agarose gel-based PCR markers for detecting Glu-1Bx and Glu-1By alleles.ResultsBy integrating the newly developed markers with previously published PCR markers, nine Glu-1Bx locus alleles (Glu-1Bx6, Glu-1Bx7, Glu-1Bx7*, Glu-1Bx7OE, Glu-1Bx13, Glu-1Bx14(−), Glu-1Bx14(+)/Bx20, and Glu-1Bx17) and seven Glu-1By locus alleles (Glu-1By8, Glu-1By8*, Glu-1By9, Glu-1By15/By20, Glu-1By16, and Glu-1By18) were distinguished in 25 wheat cultivars. Glu-1Bx6, Glu-1Bx13, Glu-1Bx14(+)/Bx20, Glu-1By16, and Glu-1By18 were distinguished using the newly developed PCR markers. Additionally, the Glu-1Bx13 and Glu-1Bx14(+)/Bx20 were distinguished by insertions and deletions in their promoter regions. The Glu-1Bx6, Glu-1Bx7, Glu-1By9, Glu-1Bx14(−), and Glu-1By15/By20 alleles were distinguished by using insertions and deletions in the gene-coding region. Glu-1By13, Glu-1By16, and Glu-1By18 were dominantly identified in the gene-coding region. We also developed a marker to distinguish between the two Glu-1Bx14 alleles. However, the Glu-1Bx14(+) + Glu-1By15 and Glu-1Bx20 + Glu-1By20 allele combinations could not be distinguished using PCR markers. The high-molecular-weight glutenin subunits of wheat varieties were analyzed by ultra-performance liquid chromatography and sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and the findings were compared with the results of PCR analysis.ConclusionsSeven Glu-1Bx and four Glu-1By allele detection markers were developed to detect nine Glu-1Bx and seven Glu-1By locus alleles, respectively. Integrating previously reported markers and 11 newly developed PCR markers improves allelic identification of the Glu-B1 locus and facilitates more effective analysis of Glu-B1 alleles molecular variations, which may improve the end-use quality of wheat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call