Abstract
Controlling tumor-specific alterations in metabolic pathways is a useful strategy for treating tumors. The glyoxalase pathway, which metabolizes the toxic electrophile 2-methylglyoxal (MG), is thought to contribute to tumor pathology. We developed a live cell-based high-throughput screening system that monitors the metabolism of MG to generate d-lactate by glyoxalase I and II (GLO1 and GLO2). It utilizes an extracellular coupled assay that uses d-lactate to generate NAD(P)H, which is detected by a selective fluorogenic probe designed to respond exclusively to extracellular NAD(P)H. This metabolic pathway-oriented screening is able to identify compounds that control MG metabolism in live cells, and we have discovered compounds that can directly or indirectly inhibit glyoxalase activities in small cell lung carcinoma cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.