Abstract

Porous composite scaffolds of chitosan-alginate (CH-AL) reinforced by biphasic calcium phosphate fibers containing silicon (Si) were prepared using the freeze-drying method. The fibers were synthesized using a homogenous precipitation method with differing reaction times and were characterized by XRD, FTIR, SEM, and ICP-OES. Fibers produced with no Si incorporation using two different reaction times of 4 d and 8 d comprised two phases of hydroxyapatite (∼93-96 wt%) and β-tricalcium phosphate (β-TCP). No new phases were observed by adding 0.8 wt% of Si during 4 d of precipitation. However, the addition of Si to fibers synthesized within 8 d under reflux conditions produced biphasic fibers with 1.9 wt% Si which consisted of a new phase of silicocarnotite (∼94 wt%) associated with the β-TCP phase. The whisker-like fibers were 10–200 µm in length and 0.2–5 µm in width. The physicochemical, mechanical, and biological properties of composite scaffolds fabricated by adding different fiber contents and types were investigated. The scaffolds exhibited favorable microstructures with a high porosity (66–88%) and the interconnected pores varied in size between 40 and 250 µm. Scaffolds containing silicocarnotite showed a significant improvement in their mechanical properties and in vitro bioactivity (using SBF testing and characterization of the apatite layer by ATR-FTIR and SEM/EDS) as well as proliferation, mineralization and adhesion of MG63 cells, when evaluated by MTT assay, alkaline phosphatase, and SEM. Scaffolds reinforced with silicocarnotite fibers also exhibited better mechanical properties and water uptake, compared to ones containing incorporated fibers made of Si. Composite scaffolds reinforced by 50 wt% fibers precipitated after 8 d were superior in terms of their mechanical properties and achieved a compressive strength and modulus of 272 kPa and 4.9 MPa, respectively, which is 400% greater than CH-AL scaffolds. The results indicate that the addition of Si into biphasic fibers, leading to the formation of silicocarnotite, makes silicocarnotite a potential candidate for the bioactive reinforcement of composite scaffolds for bone tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.