Abstract

Periodontal disease, the most prevalent infectious disease in the world, is caused by biofilms formed in periodontal pockets. No specific bacterial species that can cause periodontitis alone has been found in any study to date. Several periodontopathic bacteria are associated with the progress of periodontal disease. Consequently, it is hypothesized that dysbiosis of subgingival microbiota may be a cause of periodontal disease. This study aimed to investigate the relationship between the subgingival microbiota and the clinical status of periodontal pockets in a quantitative and clinically applicable way with the newly developed Oral Care Chip. The Oral Care Chip is a DNA microarray tool with improved quantitative performance, that can be used in combination with competitive PCR to quantitatively detect 17 species of subgingival bacteria. Cluster analysis based on the similarity of each bacterial quantity was performed on 204 subgingival plaque samples collected from periodontitis patients and healthy volunteers. A significant difference in the number of total bacteria, Treponema denticola, Campylobacter rectus, Fusobacterium nucleatum, and Streptococcus intermedia bacteria in any combination of the three clusters indicated that these bacteria gradually increased in number from the stage before the pocket depth deepened. Conversely, Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, and Streptococcus constellatus, which had significant differences only in limited clusters, were thought to increase in number as the pocket depth deepened, after periodontal pocket formation. Furthermore, in clusters where healthy or mild periodontal disease sites were classified, there was no statistically significant difference in pocket depth, but the number of bacteria gradually increased from the stage before the pocket depth increased. This means that quantitative changes in these bacteria can be a predictor of the progress of periodontal tissue destruction, and this novel microbiological test using the Oral Care Chip could be effective at detecting dysbiosis.

Highlights

  • Periodontal disease is an infectious disease caused by oral bacteria that inhabit biofilms formed in the subgingival pocket

  • It is hypothesized that the complex composed of Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola is responsible for the initiation and progress of periodontal disease since these bacterial species are frequently isolated from severe periodontal lesions [2]

  • The subgingival microbiota obtained from patients at their first visit was classified into at least three clusters according to the similarity of the quantities of bacteria

Read more

Summary

Introduction

Periodontal disease is an infectious disease caused by oral bacteria that inhabit biofilms formed in the subgingival pocket. It is known that bacterial species forming subgingival plaques are grouped into several microbial complexes [1]. A meta-analysis report has shown that P. gingivalis is not always found in all subgingival microbiotas of deep periodontal pockets [3]. A hypothesis is proposed that periodontal disease is not caused by several specific bacterial species, but by the interactions between the host and the dysbiotic subgingival microbiota [4]. Existing methods for analysis of microbiota data is not quantitative or clinically applicable, detecting these specific bacteria is a key tool for the diagnosis of periodontal disease and assessing treatment effectiveness

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.