Abstract

Because tissues consist of solid and fluid materials, their mechanical properties should be characterized in terms of both elasticity and viscosity. Although the elastic properties of tissue-mimicking phantoms have been extensively studied and well characterized in commercially available phantoms, their viscous properties have not been fully investigated. In this article, a set of 14 tissue-mimicking phantoms with different concentrations of gelatin and castor oil were fabricated and characterized in terms of acoustic and viscoelastic properties. The results indicate that adding castor oil to gelatin phantoms decreases shear modulus, but increases shear wave dispersion. For 3% gelatin phantoms containing 0%, 10%, 20% and 40% oil, the measured shear moduli are 2.01 ± 0.26, 1.68 ± 0.25, 1.10 ± 0.22 and 0.88 ± 0.17 kPa, and the Voigt-model coupled shear viscosities are 0.60 ± 0.11, 0.89 ± 0.07, 1.05 ± 0.11 and 1.06 ± 0.13 Pa·s, respectively. The results also confirm that increasing the gelatin concentration increases shear modulus. For phantoms containing 3%, 4%, 5%, 6% and 7% gelatin, the measured shear moduli are 2.01 ± 0.26, 3.10 ± 0.34, 4.18 ± 0.84, 8.05 ± 1.00 and 10.24 ± 1.80 kPa at 0% oil and 1.10 ± 0.22, 1.97 ± 0.20, 3.13 ± 0.63, 4.60 ± 0.60 and 8.43 ± 1.39 kPa at 20% oil, respectively. The phantom recipe developed in this study can be used in validating ultrasound shear wave elastography techniques for soft tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.