Abstract
Mice with a temporally regulatable ovine metallothionein 1a--ovine growth hormone transgene (oMT1a-oGH) were utilized to study the effects of withdrawal of elevated circulating levels of growth hormone (GH) on growth and body composition. The transgene was activated from 21-42 days of age by provision of zinc sulfate in the drinking water. At 42 days, mice were allocated to either activated transgenic (remain on zinc sulfate) or inactivated transgenic (removal of zinc sulfate) groups, and to receive either ad libitum or restricted (80-90% of ad libitum) access to feed. Non-transgenic control mice were treated similarly. Body weights and intakes were recorded weekly. Mice were killed at 70 d and epididymal and subcutaneous fat pads, trimmed hind carcass and various organs were weighed. The main findings of this study are: (1) food-restricted mice possessing an activated oMT1a-oGH transgene fail to demonstrate increased growth, but exhibit significantly reduced levels of fat (P < 0.05) relative to all other genotype x feed level combinations; and (2) inactivation of the oMT1a-oGH transgene, following a period of elevated GH levels, leads to development of obesity as evidenced by two to three fold increases in epididymal and subcutaneous fat pad weights (P < 0.01) relative to both activated transgenic and non-transgenic control mice. These large increases in fat deposition also occurred when intake was restricted to 80-90% of ad libitum levels, indicating that metabolic changes independent of intake occur in these inactivated transgenic mice. It is possible that highly elevated production of GH in activated oMT1a-oGH transgenic mice leads to (1) enhanced promotion of preadipocyte differentiation, leading to increased numbers of adipocytes that, upon cessation of oGH production, are available for lipid deposition resulting in obesity, or (2) alterations in production of or responsiveness to insulin, leading to increased fat deposition upon removal of the chronic anti-lipogenic actions of GH. The oMT1a-oGH transgenic mouse line should provide a new genetic model with which to investigate the mechanisms by which growth hormone affects obesity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.